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With Applications To Queues

Peter Glynn !

Kari Sigman 3

Abstract

Let X = {X(t) : t > 0} be a pasitive recurrent synchronous process (PRS), that i,
a process for which there exists an increasing sequence of random times r = {r{k)}
such that for each k the distribution 0{8,(;)}( {X(t + 7{k)) 1 t > 0} is the same
and the cycle lengths T.‘ = r( n + 1) = r(n) have finite first moment. In the present
paper we investigate conditions under which the Cesaro a.varaged functionals 7, (f) «
L[S E(f(8,X))ds converge uniformly (over a class of functions) to x(f), where r is the
stationary distribution of X. We show that Z,(f) — x(f) uniformly over f satisfying
[1flle: €1 (total varistion convergeace). We also show that to obtain uniform convergence
over all f satisfying /] < g (9 € LT(7) fixed) requires placing further conditions on
the PRS. This is in sharp contrast to both classical regenerative processes and discrete
time Harris recurrent Markov chains (where renewal theory can be applied) where such
uniform convergence holds witho::¢ any further conditions. For continuous time positive
F arris recurrent Markov processes (where renewal theory can not be applied) we show that
these furthe- coaditions are in fact antomatically satisfied. In this cuntcxt, applications

to queueing :>dels are given,
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1. Preliminaries and Introduction

Throughout this paper, X = {X(t) : t > 0} will denote a stochastic process taking values in a complete
separable metric state space S and having paths in the space D = Ds[0, ) of functions f : Ry — S that
are right continuous and have left hand limits. D is endowed with the Skorohod topology (and is a complete
separable metric space). ({2, F, P) will denote the underlying probability space and we view X as a random
element of D. Let A denote an arbitrary fixed element not in the set S. We then endow S Esu {A} with

the one-point compactification topology.

Definition 1.1. X is said to be a synchronous process with respect to the random times 0 < r(0) <
(1) < --- ( with limp—eo 7{n) = oc¢ a.s. ) if {Xa : n > 1} forms a stationary sequence in the space DT,

where

[ X(H(n=1)+1), f0<t< Ty
Xn(t) = {A, ift > T,
T, ¥ 7(n) = r(n = 1) is called the n** cycle length, X, is called the n'* cycle and we refer to (7(n)) as the

synch-times for X with counting process N(t) = the number of synch times that fall in the interval [0,t].

Definition 1.2. A synchronous process X is called non-delayed if 7(0) = 0 a.s.; delayed otherwise. It
is called positive recurrent if E(T}) < 2, null recurrent otherwise. It is called ergodic if it is positive
recurrent and the invariant o-field, I, of {Xn, T} is trivial. A &« zﬁun is called the rate of the synch times.

A& Eﬂ}m is called the conditional rate.

From now on, PRS will be used to abbreviate positive recurrent syachronous process. To help the
reader, an appendix is included at the end of this paper giving a brief introduction to PRS’s.

8; : D — D denotes the shift operator (6,z)(s) = z(t + s), P° denotes the probability measure under
which X is non-delayed; P°(4) = P(f,(;)X € A) and P* denotes the probability measure under which X
has the stationary distribution » (see the Appendix).

The important point here is that at the random times r(k), X(t) and its future probabilistically start
over. However, in contrast to classical regenerative processes (CRP’s), or the regenerative structure found
in Harris recurrent Markov chains (HRMC's), the future is not necessarily independent of any of the past
{r(1),...,7(k); X(s) : 0 € s < r(k)}. In particular r does not (in general) form a renewal process
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and hence renewal theory does not apply to symchronous processes. Natural questions arise,
however, as to which of known limit theorems etc. that hold for CRP’s and HRMC's actually do not depend
upon renewal theory and can in fact be extended to cover PRS’s. One such result was given recently in [4]
where it was shown that for a PRS, the distributions of §, o X % {X(s+1t):t >0} are in fact tight in the
function space D. But what about limit theorems for PRS's? For example, although N(t)/t — A P a.s.

as t — oo, what can be said about

E(N(t))/t — EA, (1.1)

which does hold true for a renewal process? Similarly, for an ergodic PRS, although % fo‘ f(6,0 X)ds —

7(f), P° as.for any f € Li(x), what can be said about

w(NE 7 [[ES0,0X0is —x(f), 1€ Lufa) (12)
or
sup [ (f) - =(f) — 0, (1.3)
e S2
or (more generally)
sup {&,(f) - #(f)] — 0, foreach g€ LY(m), (14)
171€9

all three of which holds true for CRP’s and HRMC's?

We show that (1.3) is always true for a PRS (ergodic or not), whereas (1.1), (1.2) and (1.4) require
extra conditions (even in the ergodic case). These extra conditions turn out to be automatically satisfied for
continuous time Harris recurrent Markov processes (HRMP’s). In this context we give some applications to

queueing models.

2. Limit theorems for N(t)

In this section we present counterexamples showing that (1.1) is false in general. In fact we show that even
in the ergodic case it is possible that E°N(t) = oo.

Let 7 = {r(n)} be the synch times of a non-delayed PRS X. Let N(t) denote the corresponding counting
process. Under P°, X is non-delayed and the point process r is called a Palm version in which case {T},}
forms a stationary sequence. Under P*, X is stationary as is the point process r (see for example, [7}).
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Example (1) Let Z be a r.v. such that P(Z > 1) = 1 and E(Z) = oc. Define T, = 1/Z (n > 1); thus
7(n) = n/Z and E(T,) <1 < . Observe that P(N(t) > n) = P(r(n) < t) = P(tZ > n) so that indeed
E(N(t)) = oo for all t > 0. Observe, however, that {T,} is not ergodic; its invariant o-field is precisely o(Z).

Whereas Example (1) is not ergodic, our next example is.

Example (2) Consider a discrete time renewal process with cycle length distribution P = {px :
k& > 1} having finite and non-zero first moment, 1/u, but infinite second moment. Let 3(n) denote the
corresponding discrete time forward recurrence time process. B is a positive recurrent Markov chain with
invariant probability distribution a, def I‘Zkzn ps (the equilibrium distribution of P). a has infinite first
moment; 3 ,o, kay = oco. Let h(k) = 1/(k* 4+ 1) and define a point process by T, = h(B(n)); r(n) =
Ty + T2+ --+ T,. Observe that 0 < T, < 1 for all n. Under a, {T,} is a stationary ergodic sequence
and hence corresponds to a Palm version with 0 < A & {E.h(B(0))}~! < co. It is also positive recurrent
regenerative; it regenerates whenever B(n) = 0. Let y = min{n > 0 : B(n) = 0}, and observe that y = B(0).
Let M = 3.2, h(i). Consider the random time 7 = r(y) = Ty + -+~ + T,. Observe that 7 < M < oo and

that N{(T{Xy = k) = k. Thus for t > M we obtain

EON() = S BN DIB(O) = Kla
k=1
> S ENN(T)IB(O) = Elew

~
1]
—

e

ka; = oo.

k=1

The important point here is that in general, {N(¢)/t : t > 0} is not uniformly integrable (UI). We do,

however, have some sufficient conditions.

Proposition 2.1. Suppose 0 < A~! = E%(T}) < co. If either there exists an € > 0 such that P°(T, > ¢) =

1, or the interevent times {T,} form a k-dependent process, then (1.1) holds.

Proof:  Suppose PY(Ty > ¢) = 1. Then for all ¢t > 0, -’159 < 1+1, Pas. (even in the delayed
case) and hence is Ul. Suppose now that the T}, are k-dependent, that is, for each n, {Tn4; : j 2 k} is
independent of {T, : m < n}. It follows that for each i (0 < i < k—1) T(§) = {Tin4i : n 2 1} defines
a (possibly delayed) renewal process. Let N()(t) denote the corresponding i** counting process. Clearly
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. . () . . .
N(t) < NO(t) + NU(t) + -+ NE=1(4), Since V—#l i8 Ul for each i (because, for each i, it is from a

. NI
renewal process), sois —. Wl

Remark (2.1): By changing our example (2) slightly, we can actually obtain a null recur-
rent version: Let {T,} and N(t) be from example (2) (under ), and let H; denote the
distribution of T,. Let {L.} be non-negative ii.d. ~ H,, with H, having infinite first
moment. Defice o = 0, Y441 = min{n > v : B(n) = 0}. Between T,,-1 and T, , insert
Li. The idea here is to start off the k** regenerative cycle with L, and then proceed as
before. This gives rise to a new sequence of interevent times 7,,. 1aking a Palm version
of this new point process yields a stationary ergodic sequence f',? such that E(f’,?) = o0;
T2 ~ (1 —p)H1+pHz where p= 1/(1 4 1/u). Letting "‘:’(t) denote the associated counting
process, we obtain E(N(t)) > (1 - p)E(N()) = oo for t > M.

Remark (2.2): In our example(2), it is true, however (as is well known more generally in
the point process literature), that E*(N(t)) = At for all ¢ > 0 and hence that the intensity

aef E*(N(1)) is finite and is equal to X. It is only the Palm version that can blow up.

3.1 Uniform limit theorems for X

We first present an example of an ergodic PRS together with an f € L,(r), such that 4:(f) = o00. In
particular, (1.2) does not hold.

Example (3) Consider T, and B(n) from example (2). Form a semi-Markov process X(t) by using
Th as the holding time for B,. Then for B(0) ~ o, X is an ergodic PRS with synch times 7(n). Now choose

an f > 0 such that fh € L(a) but

E FRE) D on = 0.

ki
Then ) 1)
E° /0 F(X(s))ds = ; EY /0 F(X(s))ds; X(0) = k}

= 5" EP{f(k)h(k); X(0) = k}
k

=3 f(k)h(k)ar < 0.
k

5




Hence f € Ly(r). Op the other hand, for t 2 M,

t T
7,(f) = E° /o F(X(s))ds > E° j: F(X(s))ds

0 T
=& /o F(X(s))ds; X(0) = k}

k
= STENY £k - DAk~ 5); X(0) = k}
k =0

w

We do, however, have the following

Theorem 3.1. If X is PRS and g € L} () such that 1E [1*" g(8,X)ds — 0 and {} [;9(6, 0 X)ds :
t >0} is UI under P?, then

sup {F(f) = *(H)f — 0. (3.1)

gy

Before proving Theorem 3.1 we state an important corollary obtained immediately by using the function

g=1
Corollary 3.1. If.X is a PRS then i, converges to 7 in total variation.

Proof of Theorem 3.1: Assume at first that 0 < f < ¢ and that X is non-delayed. For ¢ > 0 let A(e,t)

denote the event {N(t) > (A + )t}. Let J, = Ja(f) def ff(")x) f(6: 0 X)dt. Let E7 denote E® conditional

r(n-
on the invariant o-field Z. Then

2E; /o J(8,X)ds = 3 Ex{ /0 £(6,X)ds; A(e,)°} + 7 x| /0 F(8,X)ds; Ale,))

A+ot 1 ¢
< (B> p g4 2B / 9(60,X)ds; A(e, 1)} (3.2)
0
t
<3Ezhi+(e+ DE+ 1Bl / 9(6,X)ds; A(e,1)}.
o
Taking expectations in (3.2) with respect to E yields
1 ¢ 1 1 ¢
?E° f(8,X)ds < x(f) + (e + -t-)E°J, + ;E"{ 9(8, X)ds; A€, t)}. (3.3)
0 0
By the uniform integrability hypothesis, the last term in (3.3) tends to zero. Moreover, ¢ was arbitrary. We
thus obtain
Jim sup{m,(f) - =(f)} £ 0. (34)
- /<y
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In a similar manner we obtain a lower bound: For ¢ > 0
1 ¢ 1 [(A=e)f]
- 6,X)ds > = P A(—e, t
5 [ F@Xds 2 3Bl Y A=)

(- ot 1 =99

> (AR hpy - 2B Y o) A=a )
k=1

) 1 1 [(A=01
2 ABz)y = (e+ 3)Ery = S Ex ; Je(g)i A=)},

which after taking expectations yields
_ 1 1 . [at] .
Rlf) = 7(f) 2 =(e + PE°Exdy - TE°{ Y Ja(9)i Al=e,1)°). (3.5)

k=1

Since g € L(), %Z{’:} Ji(g) is Ul since it converges a.s. to AE7J1(g) and has mean, E°{D;'-}-Ez.h(g)},
for each t. Thus the last term in (3.5) tends to zero. Consequently
Iim sup{z(f) =& ()} < 0, (36)
—rs<y
and we thus obtain (3.1). The case of f with arbitrary sign can be handled similarly; we leave out the details.
In the delayed case, we have on the one hand that
1 t 1 tAT(Q) 1 t
?E/ f(8s 0 X)ds < ?E‘/ 9(8,X)ds + ?50/ (8, 0 X)ds. 3.7)
0 0 0

The first term on the rhs tends to zero by assumption, thus, giving the neressary upper bound. On the other
hand, fort > M > 0

E/O £(8, 0 X)ds = E{/O F(8, 0 X)ds; 7(0) < M} + 50{/0 £(8, ¢ X)ds; (0) > M}
> Ef / (0o X < 1)
t-M
> E° / £(8, 0 X)ds; (0) < M) (3.8)
o!—M t
> EO{/ f(a,oX)ds}-Eo{/ g(8, 0 X)ds; 7(0) > M)}
0 0

t t [}
> 80 [ (6,0 X)ish B[ 4(6, 0 X)ds} = B [ 900, 0 X)asi7(0) > M}.
0 —-M 0
Usingin M =¢€t, 0 < € < 1, in (3.8) yields
1 ' 1 ' 1 ' 1 ¢
?E/ f(0, 0 X)ds > -t-E"’{/ f(8, 0 X)ds} - ?Eo{/ g(8; 0 X)ds} - -t-Eo{/ {9(8: o X)ds; 7(0) > et}}.
1] 0 t—te 0
(3.9)
The last integral above tends to zero by the UI assumption under P°. The middle integral converges to
€E°{AE1Jy(g)}. Thus, letting ¢ tend to zero yields (together with (3.7)) the desired result. W
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Proposition 3.1. For a PRS, if either there exists an € > 0 such that PO(T} > ¢) = 1, or the cycies {X,}

(0)

form a k-dependent process, then (3.1) holds for all g € LT () sucl that E [[* g(8,.X)ds < .

Proof: From Theorem 3.1, it suffices to show that {%fo'g(ﬁ, 0 X)ds :t > 0} is uniformly integrable under
PO 1f P%(Ty > ¢) = 1 then }fo‘g(e, o X)ds < %Z{‘m Jx(g) which is Ul for g € L} (7). Now suppose that

the cycles are k-dependent (in particular, X is ergodic). Then
N(t)+k

/g(BoYda< > Ui

= (3.6)

Z i9)+ Y T I(N(t) 2 - k).

1=1 i=k+l

By the assumption of k-dependency, the indicator /(N (t) > j — &) is independent of J;(g) and hence taking
expectations in (3.6) yields
t
Eo/ 9(8, 0 X)ds < (E°N(t) + k)E°J,(g). (3.7)
0

By Proposition ? 1. {N(t)/t} is Ul and hence by (3.7) so is {%fég(@, oX)s:t>0}. W

Remark(3.1): If X is null recurrent and non-ergodic, it is still possible that = as defined in
(A.3) is a probability measure. In this case Theorem 3.1 remains valid. Take for example,
a mixture of Poisson processes: Choose a r.v. Y such that P(0 < Y < 1) = 1 and
E(1/Y) = 2. Given Y, let {r(k)} be a (non-delayed) Poisson process at rate Y. Define
X(t) as the forward recurrence time of this point process. Then the invariant o-field is
precisely ¢(Y), E(T1|Y) = 1/Y and hence E(T}) = co. Moreover, given Y, the (marginal)
steady-state distribution of X (t) is exponential at rate Y. Thus the (unconditional) steady-
state distribution is given by F(z) =1 - E(e~Y?).

Remark(3.2): The condition 1E [;*"® g(g,X)ds — 0 s eqivalent to UTof { [;*" 9(4,X)ds}.

4. Continuous time Harris recurrent Markov processes

In this section we establish uniform limit theorems for continuous time Harris recurrent Markov processes
(HRMP’s) analogous to those already known (in the literature) to be true for discrete time Harris recurrent
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Markov processes, called Harris recurrent Markov chains (HRMC's). Although renewal theory can be usec
to analyze HRMC's, the same is not true for HRMP’s (as defined below).

Let {Z(t) : t > 0} denote a Markov process with Polish state space S and paths in Ds. We shall always
assurmne that Z has the strong Markov property.

Z s called Harris Recurrent if there exists a non-trivial o-finite measure u on the Borel sets of S such

that for any Borelset A C S
00
B(A)> 0= P, (/ 1A0Z(t)dt=oo> =1 for all z. (4.1)
)

It is known that a HRMP has a urique invariant measure (up to multiplicative constant); see for
example, [2] and [10]. If the invariant measure is finite then it is normalized to a probability measure in
which case Z is called pasitive recurrent. In Theorem 2 of [10], it is proved that a Markov process Z is a
positive HRMP if and only if it is a positive recurrent one-dependent regenerative (od-R) process. that is.
an ergodic synchronous process with one dependent cycles. In particular, Corollary 3.1 and Proposition 3.1
both apply to positive HRMP’s. So, for example, given any initial state Zo = z, it follows that the Cesaro
averaged measures 7; (A) 4 %f(;E, 1,4 0(8,2Z)ds converge to 7 in total variation as t — oc.

Once the od-R points have been selected for a HRMP, a natural question arises as to wether or not, by
placing some regularity conditions (non-lattice (or spread-out) cycle length distribution, etc.) on the cycles
of an HRMP Z, the unaveraged distributions will converge weakly (or, even better, in total variation) to =,
that is. if uf(f) &f E.(f(8:Z)) — =(f) for all bounded continuous f. The answer is no; a counterexample
is given in Remark(3.2) of {10]. Also see example(1) of [4]. (It is true, however, that for each =, {u] : t > 0}
is a tight collection of measures (see Theorem 2.1 of (4])).

Continuing in the spirit of Cesaro convergence we have
Proposition 4.1. If Z is a positive BRMP with statiopary distribution = then for each g € L} (),

sup I (f) = #(f)] — O for almost every z w.r.t. =. (4.1)
1gs

Proof: Let r(z) *E, a'(o) 9(8,X)ds and £ - {z : r(z) < oo}. From Proposition 3.1 it suffices to show

that 7(£) = 1. Now,

7(
(€)= AE’O/ ) I(r(Z(s) < =0)ds. (4.2)
0
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Moreover.
(1)
E%r(Z(s);r(1) > s} = EO{EOZ(,){/; (9(8,2Z)du}; r(1) > s)}
(1)
= Eo{/ (9(8uZ)du ;7(1) > s)}
"(1)
< E’o{/ (9(8,2)du} < ©
0
Thus r{Z(s)I(r(1) > s)) <oc P° a.s.and hence P°{r(Z(s)) < 20:7(1) > s} = 1 for all s > 0. Integrating

over s ylelds the result. B

Proposition 4.2. If Z is a positive HRMP with stationary distribution = then

/ *(dz) sup [B(f) = 7(f) — 0. (43)

1<y

for all g € L} (x) such that E®{ [/ u '8,X)du} < oo.

Proof: e must siow that the error bounds for [ (f) — #(f)| can be integrated over = with respect to

def 7(0)

7 . From the bounds obtained in (3.5)-(3.9) it suffices to show that h(z) = E, [ ' g(6,X)ds is in Ly().

An easy calculation yields

(1) (1)
/w(d:)h(:):AE"/o e,o/o 9(8.X )duds

[’(1) (1)
= AL’ g(8 X )duds
JO :

(1)
= AEO/ ug(6sX)du
o

Remark(4.1): In the proof of Proposition 4.1, the assertion that x(£) = 1 amounts, in
the terminology of discrete time Markov chain theory, to showing that a.e. state z (with
respect to 7) is g — regular (see Proposition 5.13 of Nummelin{6]). In fact, Proposition

4.1 can be viewed as a continuous time Cesaro- average analog of Corollary 6.7i) in [6].

Remark(4.2): In Asmussen {1] the definition of HRMP is different than ours. Qurs comes
from Azema, Duflo and Revuz [2]. Asmussen’s definition is more restrictive and in partic-

ular implies the existence of an embedded renewal process.
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5. Applications to queues

In /9] the stability of open Jackson queueing networks is established where service times are i.i.d. with general
distribution, exogenous interarrival times are i.i.d. with general distribution, and the routing is Markovian.
Ve present here some immediate consequences of section 4 in the context of the above stability result.

Counsider a ¢ node queueing netwotk with the n*® exogenous customer (denoted by C,) arriving at time
t, with 0 < t; <ty < - - and limy .o tn = o0. Each node is a FIFO single server station (with unlimited
size waiting room). Upon arrival, each customer is assigned (independent of t..: past) an initial station
according to the initial distribution P = (p1,pa,...,p.). Routing is Markovian : after completing service
at node i, a customer is routed (independent of all else) to the end of the queue at node j with probability
ry(1 < ij < ¢). In addition, w~ let r; ; denote the probability of leaving the system after a service
completion at node ¢ (and going home). Thus each customer’s sequence (f routings forms a Markov chain
(with initial distribution P) which we assume has precisely one set of absorbing states, the singleton {g}.
R = (r.;) is called the routing matrix. Service times at the i'® node {Si(i) : k¥ > 0} are handed out by the
server and assumed i.i.d. with distribution G; and mean 0 < 1/u; < oo; S(i) will denote a generic service
time ~ G;. We assume that exogenous arrival epochs (¢,) form a renewal process with rate 0 < A < oo
and (i.i.d.) interarrival times T = tno41 — tn; E(Tn) = 1/A. T will denote a generic interarrival time. We
let I, denote the initial node for C,; (I,) forms an i.i.d. sequence with distribution P. The service time
sequences, the interarrival time sequence, and the initial node sequence are assumed independent. This is
called a Jackson open network (JON) with general distribution i.i.d. input.

Let @, = (Qn(1),Qn(2),...,Qn(c)) denote the queue lengths (not including those in service) at the
¢ nodes at time t,— and Yy = (Ya(1),Ya(2),...,Ya(c)) the residual service times (set to zerc if server is
free). It easily follows (by all the i.i.d. assumptions) that the process X, = (Qn,Yn) forms a Markov chain
with state space X = N x R,. Let X(t) = (Q(t),Y(t)) denote the queue length vector and residual
service time vector at time t; Xn = X(t,—). Let B(t) denote the forward recurrence time of the renewal
process of exogenous arrivals; B(t) is the time until the next arrival after time t. It is eacily seen that
Z(t) = (X(t), B(t)) is a Markov process with state space S = ¥ x R, and paths in D.

For each i (1 £ i < ¢), let N,(i) denote the (random) number of times that C, will desire service at
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node i. M, o E(Nna(#)) < 20 (in fact has finite moments of all orders). Define A; def AM;; we refer to A as

the total arrival rate to pode i. It is well known that the J;'s are the unique solution to the following set of

¢ equations :

A =/\p,~+2/\:-rj,~+/\.'rﬁ, 1<i<e. (2.1)
I
Finally, we define p; def Ai/pi; it represents the long run average rate at which work arrives exogenously
to the system destined for node i; p def p1 + -+ p. denotes the total long run average rate at which work

arrives exogenously to the system.

The following two theorems are proved in [9]:
Theorem 5.1. The Markov chain .X = {X,} for JON is Harris ergodic if p; < 1 for eachi (1<i<¢).

Theorem 5.2 If A > 0 (i.e. interarrival times have finite first moment) then the Markov process 2 for
JON is a positive Harris recurrent Markov process (HRMP) if p; < 1 for each i (1 < i < ¢). In particular it is
positive recurrent one-dependent regenerative (od-R) with a unique steady-state distribution =. Moreover,
Z(t) coaverges ta * in total variation if and only if A is spread-out. (In geperal, #{(X(t) = 0} = 0 and
bence the regeneration points of Z are not described by consecutive visits of X to the empty state).

From the above theorem we see that Z is an ergodic PRS with one-dependent cycles. Thus, so is any
continuous functional f(Z(t)) such as total queue length Qr(t) (sum of the ¢ queue lengths). Moreover,
total work in system w(t) is also; w(t) denotes the sum of all remaining service times of all customers in the
system (including their feedback) at time ¢t (see section 4 of [9]). We thus obtain the following special cases

of the results in section 4:
Proposition 5.1.  For a JON with p; <1 for each i (1< i < c), the following hold:
%/O‘P,(w(s) € -)ds — P.(w(0) € -) in total variation for each z.
%/O‘P'(QT(") € -)ds — P,(Qr(0) € ) in total variation for each z.
If £,(w(0)) < oo then
%/:E’(w(’))d’ — E4(w(0)) for almost every z w.r.t.r.

12




1 s
?/ E(Qr(5))ds — E-(Qr(0)) for almost every : w.r.t.x.
0

APPENDIX : A brief introduction to synchronous processes

Our use of the word synchronous is from [3]. Other names have been given to a synchronous process;
for example Serfozo [8] cefers to them as semi-stationary processes. In Rolski[7] they arise as Palm versions
of stationary processes (associated with point processes). Closely related to this is the general theory of
stationary marked point processes. In any case, the ergodic properties of synchronous processes are well
known in the literature. We state several such results the proofs of which can be found in, for example (3],
(4], 3], (7] and (8].

Let 8, : D — D denote the shift operator (8,z)(s) = z(t + s).

Theorem A.1. Suppose X isa PRS and f : Ds — R is measurable. Let J, = J,(f) &f f,((:lx) f(6:0X)dt.

r

If Jo(1f]) < >0 a.s. and if either f > 0 a.s. or E{J1(]f])} < oc then

E{J,|T}
Jlim /f o X)ds ‘E{Tl,z} as. (A.0)

where I denotes the invariant o-field associated with {(Xn, Ta)}.

Let P° denote the probability measure under which X is non-delayed, that is, P°(X € A) = P(f,;)0X €

A).

Corollary A.1. Under the conditions of Theorem A.l, if in addition T is trivial (every set has probability
0 or 1) then {Ja,Tn : n > 1} is ergodic and hence a.s.

/ (8, 0 X)ds = i—g}—} = A/ PO(6, 0 X € A;7(1) > s)ds. (4.2)

t—oo
Under these circumstances, X is called ergodic.

The following Corollary follows from (A.1} by an elementary application of Fubini’s Theorem and the

Bounded Convergence Theorem.

Corollary A.2. Under the hypothesis of Theorem A.l, if in addition f is bounded then

et L[ o . aet -, [ E{1|T}
RN [ Ere 00t — o p{FHLL. (43)
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x above defines a measure on D and (for reasons given below in Proposition A.1) is called the stationary
probability measure for X. In particular, by choosing f = 14 (an indicator function), we have GT,(A) — 7{A)

for each Borel set A of D; thus the Cesaro averaged distributions converge weakly.

Proposition A.1. Let r be the stationary measure of a PRS X. Then under x, § = (6,) is measure
preserving on D, that is, for each Borel set A, 7(A) = =(6-,A) for all s > 0. In particular, if X has

distribution =, then X is time stationary, that is, 6; X has the same distribution for each t > 0.

Let P* denote the probability measure under which X has distribution =, that is, P*(X € A) = n(4).
From (A.2) we obtain for an ergodic synchronous process that

o0
P*'X€eA= A/ P%9,0X € A; (1) > s)ds. (44)
0

If X is positive recurrent but not ergodic then the RHS of (A.4) still defines a probability measure on

D (but not necessarily the same as the r from (A.3)). In fact, more can be said:

Proposition A.2 For a PRS the RHS of (A.4) defines a probability measure on D (in general, not the

same as x) under which § = (9,) is measure preserving.
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